Teil 1
Kennen wir für einen konkreten Stichprobenmittelwert - im Hinblick auf die Antworthypothese H0 - sowohl das
- als auch das
-Fehler-Risiko, so stellt sich natürlich die Frage, unter welchen Bedingungen H0 zu Gunsten von H1 abgelehnt werden soll.
Bezüglich des
-Fehler-Risikos kennen wir die Antwort: Wir können H0 verwerfen, wenn das
-Fehler-Risiko kleiner wird als 5%. Wie steht es nun aber mit dem
-Fehler-Risiko? Hierfür gibt es keine etablierten Grenzwerte, letztendlich ist es immer eine inhaltliche Frage, welches
-Fehler-Risiko als t ragbar erachtet wird. Eine Faustregel für Entscheidungen ohne spezielle Tragweite kann aber angegeben
werden.
Faustregel
-
Wir verwerfen H0 zugunsten von H1 bei einem Alpha-Fehler-Risiko
5% und einem Beta-Fehler-Risiko
20%.
-
Wir nehmen H0 an und verwerfen H1 bei einem Alpha-Fehler-Risiko
20% und einem Beta-Fehler-Risiko
5%.
Zur Veranschaulichung greifen wir unser Beispiel noch einmal auf. Wir prüfen unsere Daten bezüglich einer spezifischen Alternativhypothese.
Wir erinnern uns: In der Eichpopulation 10-11jähriger mitteleuropäischer Kinder sind die Leistungen in einem eingeführten
Agilitätstest mit den Parametern
= 150,
= 10 normalverteilt. Wir vergleichen die mittlere Leistung einer Stichprobe verhaltensauffälliger Kinder von 10-11 Jahren
(
= 152, s = 9; n = 49) mit dem Mittelwert der Eichpopulation. Testpsychologische Erfahrung lehrt, dass der höhere Mittelwert
in der Stichprobe nur sinnvoll interpretiert werden kann, wenn diese aus einer Population stammt, deren Mittelwert um mindestens
3 Punkte über demjenigen der Eichpopulation liegt.
Wir verfahren zum Vergleich des Stichproben- und des Populationsmittelwertes wie gewohnt:
-
Zusammenstellung der Voraussetzungen, von denen man bei der Wahl des Prüfverfahrens ausgehen kann:
Population: N(150,10); Stichprobe:
= 152; s = 9; n = 49;
-
Prüfgrösse ist
.
-
Arbeitshypothese H0:
Spezifische Alternativhypothese H1:
Damit definieren wir die Effektgrösse: -
Unter der Annahme der Gültigkeit der Hypothesen H0 und H1 kennen wir die Verteilungen der Stichprobenmittelwerte: Für eine
Stichprobe der Grösse n = 49 sind die Stichprobenmittelwerte mit den Verteilungsparametern
und
normalverteilt.
Unter Annahme der Gültigkeit von H0:
Unter Annahme der Gültigkeit von H1: -
Zur Bestimmung der einseitigen Über- resp. Unterschreitungswahrscheinlichkeit des Stichprobenmittelwertes
= 152 transformieren wir diesen Mittelwert für H0 und H1 in die z-Verteilung.
Für H0:
Für H1:

Beta-Fehler-Risiko: p(z


Zur Beachtung: Sie können die Zahlen in verschieden Formaten eingeben, zum Beispiel 1.3% oder 0.013!